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Outline

� PaveVision3D Ultra laser imaging 
technology

� 3D imaging processing algorithms and 
software solutions for automated PCI 
analysis (partial)

� Precision and bias evolution of  software 
algorithms



PaveVision3D Ultra Systems



3D Ultra Data Collection System



PaveVision3D Ultra Approach

�Use Multiple Sensors

�Increase 3D Profile Line Rate 
to 30,000/second

�Complete Coverage of 
Pavement Lane
�True 1mm at Any Data Collection 
Speed up to 60MPH (100KM/H)

5



Virtual Pavement

�1mm Pavement Surface in All 
Three Dimensions

�0.33mm Resolution Vertically

�High-Precision IMU

�Result
�Grades, Horizontal Curves, Cross-
Slope
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3D Ultra Data



3D Data at 60MPH (100KM/h)
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3D Data at 60MPH (100KM/h)
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Current Status

�Sensor Technology: Completed

�Challenges to the Team & 
Industry: Software Solutions

�To be beautiful, & also usable to 
pavement engineers

�Confidence in quality of data

�Utilization & analysis of 1mm data

10



Data Analysis Challenges & Needs

�Fast data processing 

�Robust algorithms

�Evaluation methods/protocols

�Algorithms to benchmark crack 
detection

�Evaluation methods 

�Benchmark database 



Big Data Challenges

� High Quality 3D Visualization

� Big Data: 8 Million Pixels per Image which only 
Covers 2m-long Pavement Surface 

� Real-time Data Decompression

� Real-time 3D Virtual Pavement Rendering 

� Real-time Analysis on Pavement 
Distresses

� Detection

� Classification

� Measurement

� Real Time Speed: Up to 60MPH



GPU & Parallel Computing

� Parallel computing

� GPU computing

� Multi-core

� Streaming SIMD extensions

� Multi-threading

� GPU computing

� Millions of threads

� Hundreds times faster than CPU

� High independency of data

� Data transfer between GPU and CPU 



GPU and CPU (NVIDIA)
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Multi-GPU Techniques
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Automated Cracking Detection 

� Processing Time (Detection + Classification + 
Measurement): 
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• Parallel Techniques: 
300ms 

• Single CPU: 20,000ms



Interactive Cracking Detection
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� Detection result: false-positive or false-negative
� Adjust level of contrast: achieve better 
performance 

Positive or 
Negative



Regional Detection
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� Help find fine cracks missed in automatic or 
interactive detection

� Delete false cracks within selected region



Crack Classification



Crack Classification: Preparation

�Meshing method

� Accelerate processing speed and reduce 
noises

�Stitching disconnected cracks

�Morphological filters: dilation & erosion 
techniques

� Gradient based method: obtain close 
loop contour



Crack Classification: Contour



�Obtain contours of each close loop 
pattern

�Compute complexity of each 
segment block

�Apply thinning methods to subdivide 
segment blocks

�Apply merging methods to merge 
disconnected crack patterns

Crack Classification: Segmentation



Classification Results: Segmentation
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Classification Results: Segmentation

24

After merging



� Calculate # of predominant crack direction

� Complexity of crack pattern

� Complex pattern: alligator or blocking

� Simple pattern: transverse or longitudinal

� Combine geometric information with 
cracking pattern for classification

� Location: WP, NWP

� Width & height: segment block 

� # of predominant crack direction

Crack Classification



Classification Results
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Airport PCI Analysis

� PCI – Pavement Condition Index

� Quantitative Measure of 
Pavement Condition

� FAA AC 150/5380-6A (ASTM 
D5340-03) 

� Pavement distress

� Type

� Quantity

� Severity

� Objective and repeatable



Airfield PCI Issues in APMS

�Difficulty in PCI Calculation

� Tedious manual rating processes

� Substantial manpower

� Access to airfield pavement

�Difficulty in Preparing Maintenance 
Programs Using PCI only

� Short of detailed quantitative 
information 

(Source: Margaret Broten and Rachel De Sombre (2001). The Airfield Pavement 
Condition Index (PCI) Evaluation Procedure: Advantages,Common Misapplications, and 
Potential Pitfalls.  5th International Conference on Managing Pavements, Seattle, 
Washington)



Benchmarking Crack Detection

�Distress detection algorithms
�Fast 

�Achieve high scores in both 
precision and recall rate

�Crack image library for 
benchmarking of crack 
detection algorithms



Precision Recall Analysis

� Precision: correctly identified cracks over 
total identified cracks

� Recall: correctly identified cracks over 
total crack

� Confusion Matrix
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Actual positive Actual negative

Predicted positive True Positive False Positive

Predicted negative False Negative True Negative



Precision  Recall Analysis
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Precision-Recall (PR) Curve

Precision as Y axis; Recall as X axis
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• Trade-off Relationship
• Upper Right Corner



Benchmark Image Sources
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3D Benchmark Image Library

� Total size: 1535

� Image Group:

� Flexible Pavement: 4

� Rigid Pavement: 4

� High Friction Surface

� Ground truth Generation

� Crack map images 

� Manual visual inspection

34



3D Benchmark Image Library
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Group

Flexible Pavement

High 
Friction

Coarse Surface
Good 
Quality

Bad Quality
Crack 
Sealing

Size 224 255 260 80 61

Group

Rigid Pavement

Complex 
Condition

Good 
Condition

Texture 
Pavement

NGCS

Size 260 285 120 51



Example Image

� Asphalt Bad Quality
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Example Image

� Asphalt Good Quality
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Example Image

� Concrete Complex Condition
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Ground Truth Labeling
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Case Study

� Performance

� Sensitivity
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Algorithm Performance Analysis

� Asphalt Bad Quality
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Algorithm Performance Analysis

� Asphalt Good Quality
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Algorithm Performance Analysis

� Concrete Complex Condition

43

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Recall

seedGrow

LightingModel

Lighting3DImageModel

ADA3D

Test F-value

SeedGrow 0.82

Lighting Model 0.72

Lighting 3D 
Image Model

0.80

ADA3D 0.66



Algorithm Performance Analysis

� Concrete Good Condition
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Algorithm Performance (F Score)

45

Test Group SeedGrow Lighting Model
Lighting 3D 

Image Model
ADA3D

Asphalt Bad Quality 0.800.800.800.80 0.72 0.73 0.56

Asphalt Good 

Quality
0.90 0.86 0.940.940.940.94 0.74

Concrete Complex 

Condition
0.820.820.820.82 0.72 0.80 0.66

Concrete Good 

Condition
0.880.880.880.88 0.82 0.86 0.72

Average 0.85 0.78 0.83 0.67

SeedGrow > Lighting 3D > Lighting Model > ADA3D



Sensitivity Analysis

� Calculate SD of discrete PR points from 
top 40% F score.
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Test Group SeedGrow Lighting Model
Lighting 3D 
Image Model

ADA3D

Asphalt Bad 
Quality

0.092 0.062 0.015 0.021

Asphalt Good 
Quality

0.069 0.062 0.020 0.032

Concrete 
Complex 
Condition

0.058 0.049 0.008 0.018

Concrete Good 
Condition

0.053 0.034 0.017 0.020

Average 0.068 0.052 0.015 0.023

Lighting 3D < ADA3D < Lighting Model < SeedGrow



What’s Next?

� Improve the efficiency of stitching and 
develop 3D virtual runway with 
attached detailed distress information 
in database 

� Implement automated capabilities for 
PCI analysis (partial)

�Achieve acceptable levels of precision, 
bias and repeatability



Stitching Images



MHIS-Airport2D



MHIS-Airport3D Interface
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